Answer:
19
Explanation:
Given:
To find:
Therefore:
- New data is 19,27,64,36,x
- Where x is an unknown value/data.
Mean Value:
![\displaystyle \large{m=(1)/(n)\sum_(i =1)^n x_i \to (x_1+x_2+x_3+...+x_n)/(n)}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/qmpv4odnybqzvebrs0wgy2bo2xla1rm2bi.png)
- m = mean value
- x1+x2+x3+...+xn = sum of all data
- n = amount of data
Therefore:
![\displaystyle \large{33=(19+27+64+36+x)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/ufuz0y4lozqyk2u2f84ni3jostek27jhi4.png)
Solve for x - first, multiply both sides by 5 to clear out the denominator:
![\displaystyle \large{33\cdot 5=(19+27+64+36+x)/(5) \cdot 5}\\\displaystyle \large{165=19+27+64+36+x}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/atxro0aaczpktx33rf0yhhdpn57w4bfve4.png)
Evaluate the sum:
![\displaystyle \large{165=146+x}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/7k984yol5dfwhvafpl78nlvbhp9ot2fi4x.png)
Subtract both sides by 146:
![\displaystyle \large{165-146=146-146+x}\\\displaystyle \large{19=x}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/bskqgyrxztvtccacz5tx103it406wawelp.png)
Therefore, another value/data that will give a mean value of 33 is 19.