111k views
3 votes
What is the following quotient? StartFraction StartRoot 6 EndRoot + StartRoot 11 EndRoot Over StartRoot 5 EndRoot + StartRoot 3 EndRoot EndFraction StartFraction StartRoot 30 EndRoot + 3 StartRoot 2 EndRoot + StartRoot 55 EndRoot + StartRoot 33 EndRoot Over 8 EndFraction StartFraction StartRoot 30 EndRoot minus 3 StartRoot 2 EndRoot + StartRoot 55 EndRoot minus StartRoot 33 EndRoot Over 2 EndFraction Seventeen-eighths Negative five-halves

User Niharvey
by
4.8k points

2 Answers

6 votes

Answer: B. square root 30- 3 root 2 plus square root 55- square root 33/ 2

Explanation:

its right

User Category
by
4.4k points
6 votes

Answer:

StartFraction StartRoot 30 EndRoot minus 3 StartRoot 2 EndRoot + StartRoot 55 EndRoot minus StartRoot 33 EndRoot Over 2

Explanation:

Given the surdic equation as shown
(√(6)+√(11) )/(√(5)+√(3) )\\

To find the quotient, we will rationalize by multipying both numerator and denominator of the function by the conjugate of the denominator.

Given the denominator
√(5)+√(3), its conjugate will be
√(5)-√(3)

Multiplying through by
√(5)-√(3), we have;


= (√(6)+√(11) )/(√(5)+√(3) ) * (√(5)-√(3) )/(√(5)-√(3) )\\


= (√(30)- √(18)+√(55)-√(33))/(2)\\= (√(30)- √(9*2)+√(55)-√(33))/(2)\\= (√(30)- 3√(2)+√(55)-√(33))/(2)

The final expression gives the requires answer

User Dominic Santos
by
5.0k points