44.1k views
2 votes
Un globo aerostatico se encuentra a 300 pies a nivel del mar se encuentran estacionados 2 barcos. El tripulante del globo mide el angulo de depresion al primer barco con respecto a una linea que traza hacia el horizonte mismo que le da 40 grados ; despues con respecto a esa linea traza el angulo de depresion para el segundo barco y obtiene 25 grados ¿que distancia hay entre un barco y otro?

User Dan Dyer
by
4.3k points

1 Answer

7 votes

Answer:

1001 feet

Explanation:

A triangle is formed where the points are the balloon, boat 1 and boat 2. We know the height of the triangle and the respective angles of each boat, if we cross a line just at the height of the balloon, two rectangular triangles are formed and we can calculate the distance from the ship to that point of height, the sum of these two distances, would be the distance between the two balloons.

To calculate this distance, we apply tangent of the angle:

tan ° A = opposite / adjacent

opposite is the height and adjacent the distance we want to find:

d1 = opposite / tan ° A

d1 = 300 / tan 40

d1 = 300 / 0.8390

d1 = 357.56

now for the other distance:

d2 = opposite / tan ° B

d2 = 300 / tan 25

d2 = 300 / 0.4663

d2 = 643.36

In other words, the distance between the boats is:

357.56 + 643.36 = 1000.92

Approximately 1001 feet

User Bracher
by
4.5k points