Answer:
![proj_uw=6.2i-4.2j](https://img.qammunity.org/2021/formulas/mathematics/high-school/ad3u8akpzvhm19twu195fehwq1xcf4so7v.png)
Explanation:
The projection of a vector
onto a vector
is defined as the projection of the vector
on the line that contains the vector
. It can be calculated using the following formula:
![proj_uv=(u\cdot v)/(||u||^2) u](https://img.qammunity.org/2021/formulas/mathematics/college/6ctpdsf7k0bix4qq2rj1equuwlv3ozvumh.png)
Where:
Is the dot product between
and
which is given by:
![u\cdot v= $$\sum_(i=1)^(n) u_iv_i= u_1v_1+u_2v_2+...+u_nv_n$$](https://img.qammunity.org/2021/formulas/mathematics/college/knrq360t5fw9plt156r4dntyqzur34srqk.png)
and:
![||u||](https://img.qammunity.org/2021/formulas/mathematics/high-school/5q1gkzcr17st9rjalp9hj9yjbau8vmrmoj.png)
Is the magnitude of vector which can be calculated as follows:
![||u||=√(u_1^2+u_2^2+...+u_n^2)](https://img.qammunity.org/2021/formulas/mathematics/college/o7p1xv1vbx04rmqurbd5ys52jbl52slt7a.png)
In this sense, the projection of vector w onto vector u is:
![proj_uw=(u\cdot w)/(||u||^2) u](https://img.qammunity.org/2021/formulas/mathematics/high-school/xdij9sdutp1jw6fjlziglxes1a96wouf0q.png)
Where the dot product between
and
is:
![u\cdot w =(9*19)+(-6*15)=171-90=81](https://img.qammunity.org/2021/formulas/mathematics/college/90cyqk3dqpvchkx4g0fhbrt69mhzlftojs.png)
And the magnitude of
is:
![||u||=√(9^2+(-6)^2) = 3 √(13)](https://img.qammunity.org/2021/formulas/mathematics/college/gvpfzvvyvqoecm5gksdxvs7cykb6no0zkq.png)
Thus:
![proj_uw=(u\cdot w)/(||u||^2) u=(81)/(117) \langle9,-6\rangle=\langle6.23,-4.15\rangle\approx6.2i-4.2j](https://img.qammunity.org/2021/formulas/mathematics/high-school/2c3g7l84n5kdbh2qjopqhm0d53eokmsxca.png)