Answer:
vx = 10.09 m/s
vy = 29.31 m/s
t = 5.98 s
ymax = 43.83 m
xmax = 60.37 m
Step-by-step explanation:
A) The horizontal speed is constant in the complete trajectory. It is given by:
![v_x=v_ocos\theta\\\\v_x=(31m/s)(cos71\°)=10.09(m)/(s)](https://img.qammunity.org/2021/formulas/physics/middle-school/7h9nckkbw1kfufm0vnep8dlg55xb20k9gd.png)
B) The vertical initial speed is:
![v_y=v_osin\theta\\\\v_y=(31m/s)(sin71\°)=29.31(m)/(s)](https://img.qammunity.org/2021/formulas/physics/middle-school/t6pjr7c097sxjvb2idswjmh7sm3ma0gwkt.png)
C) The flight time is given by:
![t=(2v_osin\theta)/(g)\\\\t=(2(31m/s)(sin71\°))/(9.8m/s^2)=5.98s](https://img.qammunity.org/2021/formulas/physics/middle-school/5dtuh7o2ds2q3dkoqbygrhxp0mmtapl1g5.png)
D) The maximum height is:
![y_(max)=(v_o^2sin^2\theta)/(2g)\\\\y_(max)=((31m/s)^2(sin71\°)^2)/(2(9.8m/s))=43.83m](https://img.qammunity.org/2021/formulas/physics/middle-school/1v3vrp8ip8x9hlyh527xpq6ezl4w3w71bf.png)
E) The maximum horizontal distance is:
![x_(max)=(v_o^2sin2\theta)/(g)\\\\x_(max)=((31m/s)^2sin(2*71\°))/(9.8m/s^2)=60.37m](https://img.qammunity.org/2021/formulas/physics/middle-school/hit9aacqvm7y7g4zpav5no303v4dpdc3m2.png)