We have been given that in ΔJKL, k = 22 cm, ∠L=23° and ∠J=26°. We are asked to find the length of j to the nearest tenth of a centimeter.
We will use law of sines to solve for side j.
, where, a, b and c are opposite sides to angles A, B and C respectively.
We need to find measure of angle K to apply law of sine to our given problem.
Using angle sum property, we will get:
![\angle J+\angle K+\angle L=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kdmw0236em93eoutwdm3qypov5u6ps6yfk.png)
![26^(\circ)+\angle K+23^(\circ)=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xy7xtkb53l3xxoqzfleizktajo6c9qcu4g.png)
![\angle K+49^(\circ)=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8xmnnuormy99e9hxdwgag79pyyjrww50c0.png)
![\angle K+49^(\circ)-49^(\circ)=180^(\circ)-49^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wl1sosgitpfvyyfpnh9mk65hzc84vqmhuw.png)
![\angle K=131^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/355to5v3x9zzjxsyjkjxgpkju06pgf78i2.png)
![\frac{j}{\text{sin}(J)}=\frac{k}{\text{sin}(K)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/hy09syi9ht2uopszkug7h5xvneicadzvm9.png)
![\frac{j}{\text{sin}(26^(\circ))}=\frac{22}{\text{sin}(131^(\circ))}](https://img.qammunity.org/2021/formulas/mathematics/high-school/s23qbedpg3sygydof92i41wjqr8g8ypqrm.png)
![\frac{j}{\text{sin}(26^(\circ))}\cdot \text{sin}(26^(\circ))=\frac{22}{\text{sin}(131^(\circ))}\cdot \text{sin}(26^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/afxrealj95yo77g7oui9dacimqwrecdtas.png)
![j=(22)/(0.754709580223)\cdot 0.438371146789](https://img.qammunity.org/2021/formulas/mathematics/high-school/k28rjjqtrcj3ez22trg0rtvorso1jcybvf.png)
![j=(9.644165229358)/(0.754709580223)](https://img.qammunity.org/2021/formulas/mathematics/high-school/domoqueadxsjtl8ccjq7wzkozn2rc62qa4.png)
![j=12.77864423889](https://img.qammunity.org/2021/formulas/mathematics/high-school/hv80dx4e3jwtdd6m9gai3331dfo6sdbi1e.png)
Upon rounding to nearest tenth, we will get:
![j\approx 12.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/va6pd2akbniryiksbb3r4xsi0waanwau1d.png)
Therefore, the length of j is approximately 12.8 cm.