139k views
5 votes
El ancho de un jardìn de forna rectangular mide 40m y su diagonal 60m ¿Cuàl de las siguientes opciones nos indica la medida del largo del jardìn con dos decimales? A) 44,72 b) 44,55 c) 30,45

2 Answers

6 votes

Answer:

A) x = 44,72 m

Explanation:

A rectangular shape means two dimensions width (w) and length (l) and the internal angles are of 90⁰; therefore if we know one of its side, and a diagonal (d) we can calculate the other side, using Pytagoras Theorem, then:

x² + l² = d²

x² = d² - l² ⇒ x² = (60)² - (40)² ⇒ x² = 3600 - 1600

x² = 2000

x = √2000

x = 44,72 m

User Rossen Stoyanchev
by
5.1k points
3 votes

Answer:

La longitud del jardín es
l \approx 44.72\,m. (Opción A) (The length of the garden is
l \approx 44.72\,m) (Option A)

Explanation:

El largo del jardín se calcula por el Teorema de Pitágoras (The length of the garden is now calculed by the Pythagorean Theorem):


l = \sqrt{(60\,m)^(2)-(40\,m)^(2)}


l \approx 44.72\,m

User Mamata Hegde
by
4.4k points