Final answer:
Ball 1 floats with half exposed above water level. Tension on rope holding Ball 2 is calculated using weight and buoyant force. Tension on rope holding Ball 3 is equal to buoyant force.
Step-by-step explanation:
A. Ball 1 is floating with half of it exposed above the water level.
This means that the buoyant force on the ball is equal to the weight of the ball.
Since the buoyant force is greater than the weight of the ball, the ball floats.
B. The tension on the rope holding Ball 2 can be found using the equation:
Tension = Weight - Buoyant force.
The weight of the ball is calculated by multiplying its volume by its density and acceleration due to gravity.
The buoyant force can be found by multiplying the volume of the ball submerged in water by the density of water and acceleration due to gravity.
C. The tension on the rope holding Ball 3 is the same as the buoyant force acting on it.
The buoyant force can be found by multiplying the volume of the ball submerged in water by the density of water and acceleration due to gravity.