142k views
15 votes
Un grupo de niños juega en una plaza con una pelota. Uno de ellos lanza la pelota en forma vertical hacia arriba. La pelota describe en su trayectoria una parábola que responde a una función cuadrática, siendo el tiempo "t" la variable independiente.

1) Dibujen en un sistema de coordenadas cartesianas la posible trayectoria parabólica de la pelota (usen GeoGebra, pueden utilizar una aplicación del celular)

2) Escriban una posible expresión matemática que modelice la situación planteada. ¿Qué significado tienen, en este caso, las coordenadas del vértice? ¿Qué significan las probables intersecciones con el eje "x"? ¿Y con el eje "y"?

User Maven
by
5.3k points

2 Answers

10 votes

Final Answer:

1) Representar gráficamente la trayectoria parabólica de la pelota en GeoGebra o una aplicación móvil.

2) La función cuadrática que modela la situación podría ser
\( h(t) = h_0 + v_0t - (1)/(2)gt^2 \), donde
\( h_0 \) es la altura inicial,
\( v_0 \) es la velocidad inicial y ( g ) es la aceleración debida a la gravedad. Las coordenadas del vértice
(\( t_v, h_v \)) representan el tiempo y altura máxima de la parábola. Las intersecciones con el eje ( x ) son los tiempos en los que la pelota toca el suelo, y las intersecciones con el eje ( y ) indican la altura inicial y final.

Explanation:

In the first step, we are tasked with graphically representing the parabolic trajectory of the ball using GeoGebra or a mobile application. This visual representation allows for a clear depiction of the ball's path, facilitating a better understanding of its motion.

Moving on to the second step, a possible mathematical expression to model the scenario is
\( h(t) = h_0 + v_0t - (1)/(2)gt^2 \). Here,
\( h_0 \) denotes the initial height,
\( v_0 \) represents the initial velocity, and ( g ) is the acceleration due to gravity. The coordinates of the vertex
(\( t_v, h_v \)) provide crucial information, indicating the time and maximum height of the parabola. The intersections with the ( x )-axis correspond to the moments when the ball makes contact with the ground, while the intersections with the ( y )-axis signify the initial and final heights.

Understanding these mathematical concepts is fundamental in physics, enabling the accurate modeling of projectile motion. GeoGebra or similar tools enhance the learning experience by providing a dynamic and interactive platform for exploring mathematical models visually. This process not only aids in comprehending the specific scenario but also reinforces broader skills in mathematical modeling and problem-solving.

User Alex Robertson
by
5.5k points
6 votes

Answer:

Explanation:

gpih

User Serg Vasylchak
by
5.6k points