Answer:
![AC=9.2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p3ufssfiwxjjccd512lgne203oykfxka02.png)
Explanation:
The Law of Sines states:
![(sinA)/(a) =(sinB)/(b) =(sinC)/(c)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/opneqn507njhkmuftt1gmyf5lc6z2bs2uw.png)
The lower case letters represent the sides opposite the angles: ∠A - side a, ∠B- side b, ∠C- side c. It helps to make a model.
To Find AC, or side b, we can use A and B because we have the appropriate information to solve for b. Insert values:
![(sinA)/(a)=(sinB)/(b) \\\\(sin31)/(5)=(sin108)/(b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2yho1syvite1aqwyiqupzgo0q150irf360.png)
Solve for b. Multiply both sides by b:
![b*((sin31)/(5))=b*((sin108)/(b))\\\\b*(sin31)/(5) =sin108](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7scrrofn0yg99giqngyq415fxnpjvsofpj.png)
Multiply both sides by 5:
![5*(b*(sin31)/(5) )=5*(sin108)\\\\b*sin31=5*sin108](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1cc4prs4fv75wx0sicymsyqqsh6lu0jmop.png)
Divide both sides by sin 31:
![(b*sin31)/(sin31) =(5*sin108)/(sin31) \\\\b=(5*sin108)/(sin31)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1m9b3lfuz6553sercdig9tvvy8p3j2na8u.png)
Enter the simplified equation into a calculator:
![b=9.2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7ewgx2fcemsuysemgsv47ony9kr3uo7ea4.png)
The length of AC is 9.2 units.
:Done