222k views
9 votes
I can’t solve this can someone help me

I can’t solve this can someone help me-example-1

1 Answer

11 votes

Answer:


\textsf{D.}\quad(b)/(√(a^2+b^2))

Explanation:

Tan trig ratio


\tan(x)=\sf (O)/(A)

where:


  • x is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Using the given information:


\implies x=\tan^(-1)\left((a)/(b)\right)


\implies \tan(x)=\tan\left(\tan^(-1)\left((a)/(b)\right)\right)


\implies \tan(x)=\left((a)/(b)\right)

Comparing this with the trig ratio, we can say that:


x is the angle opposite side
a

Cos trig ratio


\cos(x)=\sf (A)/(H)

where:


  • x is the angle
  • A is the side adjacent the angle
  • H is the hypotenuse

Therefore:

  • A = side
    b
  • H = side
    √(a^2+b^2)


\implies \cos\left(\tan^(-1)\left((a)/(b)\right)\right)=\cos(x)= (b)/(√(a^2+b^2))

User SeparateReality
by
3.4k points