Answer:
6 m/s
Step-by-step explanation:
Given that :
mass of the block m = 200.0 g = 200 × 10⁻³ kg
the horizontal spring constant k = 4500.0 N/m
position of the block (distance x) = 4.00 cm = 0.04 m
To determine the speed the block will be traveling when it leaves the spring; we applying the work done on the spring as it is stretched (or compressed) with the kinetic energy.
i.e
![(1)/(2) kx^2 = (1)/(2) mv^2](https://img.qammunity.org/2021/formulas/physics/college/r8nrdc4k3sdnhre63qsi9rn24np62imzmg.png)
![kx^2 = mv^2](https://img.qammunity.org/2021/formulas/physics/college/h8jruvzwnny3h0znyz0vbrw6rst8h7r81x.png)
![4500* 0.04^2 = 200*10^(-3) *v^2](https://img.qammunity.org/2021/formulas/physics/college/31id14xv8mxmh3qolef7f42a602l5b7vmq.png)
![7.2 =200*10^(-3)*v^(2)](https://img.qammunity.org/2021/formulas/physics/college/zdm861abilv1m83t0n6wkdosrvtprbgxje.png)
![v^(2) =(7.2)/(200*10^(-3))](https://img.qammunity.org/2021/formulas/physics/college/b840as43mwsns7pcte9sy3zc7erk23brg9.png)
![v =\sqrt{(7.2)/(200*10^(-3))}](https://img.qammunity.org/2021/formulas/physics/college/aeth48ful4zvq7vimr6bkiu2dyu2gi8iuo.png)
v = 6 m/s
Hence,the speed the block will be traveling when it leaves the spring is 6 m/s