117k views
15 votes
# 5 pls !!
find dy/dx by implicit differentiation

# 5 pls !! find dy/dx by implicit differentiation-example-1
User Kamaal
by
4.7k points

2 Answers

5 votes

Answer:


(dy)/(dx) =
(y-3x^2)/(2y-x)

Explanation:

using the product rule to differentiate - xy then

3x² - (x
(dy)/(dx) + y(1) ) + 2y
(dy)/(dx) = 0

3x² - x
(dy)/(dx) - y + 2y
(dy)/(dx) = 0

3x² +
(dy)/(dx) (2y - x) - y = 0 (subtract 3x² - y from both sides )


(dy)/(dx) (2y - x) = y - 3x² ← divide both sides by (2y - x)


(dy)/(dx) =
(y-3x^2)/(2y-x)

User Quamber Ali
by
4.7k points
10 votes

Explanation:


5. {x}^(3) - xy + {y}^(2) = 4


(dy)/(dx) ( {x}^(3) - xy + {y}^(2) ) = (dy)/(dx) (4)


3 {x}^(2) - x(1) (dy)/(dx) + 1(y) + 2y (dy)/(dx)

Combine the dy/dx.


(dy)/(dx) ( - x + 2y) + y + 3 {x}^(2)


(dy)/(dx) ( - x + 2y) = - 3 {x}^(2) - y


(dy)/(dx) = \frac{ - 3 {x}^(2) - y}{ - x + 2y}


\frac{3 {x}^(2) + y }{x - 2y}

User Urmil Jindal
by
4.7k points