171k views
1 vote
Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a diameter of 26 feet and a height of 14 feet. Container B has a diameter of 18 feet and a height of 15 feet. Container A is full of water and the water is pumped into Container B until Conainter B is completely full. After the pumping is complete, what is the volume of the empty space inside Container A

User Pimvdb
by
5.8k points

2 Answers

2 votes

Answer:

3,815.1 feet³

Explanation:

Volume filled in B = Volume emptied from A

pi × r² × h

3.14 × (18/2)² × 15

3815.1 feet³

User Mateusz Soltysik
by
6.1k points
4 votes

Answer:

First, let's work out the V of container A and B

V_A = pi x (diameter/2)^2 x height = pi x (26/2)^2 x 14 = 2366 pi (ft3)

V_B = pi x (diameter/2)^2 x height = pi x (18/2)^2 x 15 = 1215 pi (ft3)

After pumping water from container A to container B until B is full:

The empty space inside container A would be:

V_empty = V_A - V_B = 2366 pi (ft3) - 1215 pi (ft3) = 1151 pi (ft3) = ~3615.97 (ft3)

User Bambier
by
6.2k points