177k views
1 vote
Determine the vertices, asymptotes, and foci of the hyperbola
576x^2 - 16y^2=144

Please show all your work - thanks! :)

2 Answers

4 votes

Answer:

The vertices are (±1/2, 0), the asymptote is y = -6x, and the foci of the hyperbola is

How to determine the vertices, asymptotes, and the foci?

The equation of the hyperbola is given as:


576x^2 - 16y^2 = 144

Divide through by 144


4x2 - 9y2 = 1

Rewrite as:


2x 1/4 - y2 32 = 1

Hence, the vertices are (±1/2, 0), the asymptote is y = -6x, and the foci of the hyperbola is ⁽₍₋₋₂₋₋ ₃₇ ° 0₎⁾ Hope This helps Have A Nice Day!

User Cel Skeggs
by
3.1k points
2 votes

Answer:

Hyperbola Foci:
\displaystyle (\pm (√(37))/(2), 0)

Hyperbola Vertices:
\displaystyle (\pm (1)/(2), 0)

Hyperbola Asymptotes:
\displaystyle y = \pm 6x

General Formulas and Concepts:

Math

  • Simplifying

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Coordinates (x, y)

Pre-Calculus

Hyperbola Standard Form:
\displaystyle ((x - h)^2)/(a^2) - ((y - k)^2)/(b^2) = 1

  • Center (h, k)
  • Hyperbola Vertices: (±a, 0)
  • Hyperbola Foci: c² = a² + b²

Hyperbola Asymptotes:
\displaystyle (y - k) = \pm (b)/(a)(x - h)

Explanation:

Step 1: Define


\displaystyle 576x^2 - 16y^2 = 144

Step 2: Rewrite

Rewrite equation into hyperbola standard form

  1. [Hyperbola] [Division Property of Equality] Divide 144 on both sides:
    \displaystyle (576x^2 - 16y^2)/(144) = 1
  2. [Hyperbola] Split fraction:
    \displaystyle (576x^2)/(144) - (16y^2)/(144) = 1
  3. [Hyperbola] Simplify:
    \displaystyle 4x^2 - (y^2)/(9) = 1
  4. [Hyperbola] Rewrite:
    \displaystyle (x^2)/((1)/(4)) - (y^2)/(9) = 1
  5. [Hyperbola] Rewrite a and b:
    \displaystyle (x^2)/(((1)/(2))^2) - (y^2)/(3^2) = 1

Step 3: Identify Parts

Compare the general standard form and our equation standard form to identify parts of the hyperbola.


\displaystyle (x^2)/(((1)/(2))^2) - (y^2)/(3^2) = 1
\displaystyle ((x - h)^2)/(a^2) - ((y - k)^2)/(b^2) = 1

Hyperbola Center: (0, 0)

Hyperbola Vertices:
\displaystyle (\pm (1)/(2), 0)

Step 4: Identify Other Parts

We go slightly more complex in determining the asymptotes and foci of the hyperbola.

Foci

  1. Substitute in variables [Hyperbola Foci]:
    \displaystyle c^2 = ((1)/(2))^2 + 3^2
  2. [Hyperbola Foci] Evaluate exponents:
    \displaystyle c^2 = (1)/(4) + 9
  3. [Hyperbola Foci] Add:
    \displaystyle c^2 = (37)/(4)
  4. [Hyperbola Foci] [Equality Property] Square root both sides:
    \displaystyle c = \pm \sqrt{(37)/(4)}
  5. [Hyperbola Foci] Simplify:
    \displaystyle c = \pm (√(37))/(2)

Our hyperbola foci are
\displaystyle ((√(37))/(2), 0) and
\displaystyle (-(√(37))/(2), 0).

Asymptotes

  1. Substitute in variables [Hyperbola Asymptotes]:
    \displaystyle (y - 0) = \pm (3)/((1)/(2))(x - 0)
  2. [Hyperbola Asymptotes] (Parenthesis) Subtract:
    \displaystyle y = \pm (3)/((1)/(2))x
  3. [Hyperbola Asymptotes] Divide:
    \displaystyle y = \pm 6x

Our hyperbola asymptotes are y = 6x and y = -6x.

User Urho
by
3.2k points