99.3k views
2 votes
A 15-ft beam weighing 570 lb is lowered by means of two cables unwinding from overhead cranes. As the beam approaches the ground, the crane operators apply brakes to slow the unwinding motion. Knowing that the deceleration of cable A is 20 ft/s2 and the deceleration of cable B is 2 ft/s2, determine the tension in each cable.

1 Answer

1 vote

Answer:

I. Tension (cable A) ≈ 6939 lbf

II. Tension (cable B) ≈ 17199 lbf

Step-by-step explanation:

Let's begin by listing out the data that we were given:

mass of beam (m) = 570 lb, deceleration (cable A) = -20 ft/s², deceleration (cable B) = -2 ft/s²,

g = 32.17405 ft/s²

The tension on an object is given by the product of mass of the object by gravitational force plus/minus the product of mass by acceleration.

Mathematically represented thus:

T = mg + ma

where:

T = tension, m = mass, g = gravitational force,

a = acceleration

I. For Cable A, we have:

T = mg + ma = (570 * 32.17405) + [570 * (-20)]

T = 18339.2085 - 11400 = 6939.2085

T ≈ 6939 lbf

II. For Cable B, we have:

T = mg + ma = (570 * 32.17405) + [570 * (-2)]

T = 18339.2085 - 1140 = 17199.2085

T ≈ 17199 lbf

A 15-ft beam weighing 570 lb is lowered by means of two cables unwinding from overhead-example-1
User Shiftpsh
by
4.4k points