203k views
5 votes
What are the zeros of the quadratic function f(x) = 6x ^ 2 - 24x + 1 ?

2 Answers

6 votes

Answer:

x = 2 + sqrt(138)/6 , 2 - sqrt(138)/6

Explanation:

6x² - 24x + 1 = 0

x = [-(-24) +/- sqrt[24² - 4(6)(1)]/(2×6)

x = [24 +/- sqrt(552)]/12

x = 2 +/- sqrt(138)/6

User LostJon
by
7.6k points
4 votes

Answer:

x =
(12+√(138) )/(6) and x =
(12-√(138) )/(6)

Explanation:

Let's use the quadratic formula, which states that for a quadratic of the form ax² + bc + c, the zeroes are:
x=(-b+√(b^2-4ac) )/(2a) or
x=(-b-√(b^2-4ac) )/(2a).

Here, a = 6, b = -24, and c = 1. Plug these in:


x=(-b+√(b^2-4ac) )/(2a)


x=(-(-24)+√((-24)^2-4*6*1) )/(2*6)=(24+√(552) )/(12)=(24+2√(138) )/(12) =(12+√(138) )/(6)

AND


x=(-b-√(b^2-4ac) )/(2a)


x=(-(-24)-√((-24)^2-4*6*1) )/(2*6)=(24-√(552) )/(12)=(24-2√(138) )/(12) =(12-√(138) )/(6)

Thus, the zeroes are: x =
(12+√(138) )/(6) and x =
(12-√(138) )/(6).

User Michael Runyon
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories