203k views
5 votes
What are the zeros of the quadratic function f(x) = 6x ^ 2 - 24x + 1 ?

2 Answers

6 votes

Answer:

x = 2 + sqrt(138)/6 , 2 - sqrt(138)/6

Explanation:

6x² - 24x + 1 = 0

x = [-(-24) +/- sqrt[24² - 4(6)(1)]/(2×6)

x = [24 +/- sqrt(552)]/12

x = 2 +/- sqrt(138)/6

User LostJon
by
3.9k points
4 votes

Answer:

x =
(12+√(138) )/(6) and x =
(12-√(138) )/(6)

Explanation:

Let's use the quadratic formula, which states that for a quadratic of the form ax² + bc + c, the zeroes are:
x=(-b+√(b^2-4ac) )/(2a) or
x=(-b-√(b^2-4ac) )/(2a).

Here, a = 6, b = -24, and c = 1. Plug these in:


x=(-b+√(b^2-4ac) )/(2a)


x=(-(-24)+√((-24)^2-4*6*1) )/(2*6)=(24+√(552) )/(12)=(24+2√(138) )/(12) =(12+√(138) )/(6)

AND


x=(-b-√(b^2-4ac) )/(2a)


x=(-(-24)-√((-24)^2-4*6*1) )/(2*6)=(24-√(552) )/(12)=(24-2√(138) )/(12) =(12-√(138) )/(6)

Thus, the zeroes are: x =
(12+√(138) )/(6) and x =
(12-√(138) )/(6).

User Michael Runyon
by
3.8k points