Answer:
the volume flow rate per unit depth is:
![(Q)/(b) = (2)/(3) u_(max) h](https://img.qammunity.org/2021/formulas/engineering/college/q9vv5a5tf93jz4urk1h6odeuabecangutx.png)
the ratio is :
![(V)/(u_(max))=(2)/(3)](https://img.qammunity.org/2021/formulas/engineering/college/5pz8k2zvg7dy6t3k08a178tfveqsroyugs.png)
Step-by-step explanation:
From the question; the equations of the velocities profile in the system are:
----- equation (1)
The above boundary condition can now be written as :
At y= 0; u =0 ----- (a)
At y = h; u =0 -----(b)
At y =
; u =
------(c)
where ;
A,B and C are constant
h = distance between two plates
u = velocity
= maximum velocity
y = measured distance upward from the lower plate
Replacing the boundary condition in (a) into equation (1) ; we have:
![u = u_(max)(Ay^2+By+C) \\ \\ 0 = u_(max)(A*0+B*0+C) \\ \\ 0=u_(max)C \\ \\ C= 0](https://img.qammunity.org/2021/formulas/engineering/college/nwlrwmszvvu9o310wkaza17lbvhgqoawgr.png)
Replacing the boundary condition (b) in equation (1); we have:
![u = u_(max)(Ay^2+By+C) \\ \\ 0 = u_(max)(A*h^2+B*h+C) \\ \\ 0 = Ah^2 +Bh + C \\ \\ 0 = Ah^2 +Bh + 0 \\ \\ Bh = - Ah^2 \\ \\ B = - Ah \ \ \ \ \ --- (d)](https://img.qammunity.org/2021/formulas/engineering/college/cbep2qm7nnqa03ips65r5b7rta7t6f503p.png)
Replacing the boundary condition (c) in equation (1); we have:
![u = u_(max)(Ay^2+By+C) \\ \\ u_(max)= u_(max)(A*((h^2)/(2))+B*(h)/(2)+C) \\ \\ 1 = (Ah^2)/(4) +B (h)/(2) + 0 \\ \\ 1 = (Ah^2)/(4) + (h)/(2)(-Ah) \\ \\ 1= (Ah^2)/(4) - (Ah^2)/(2) \\ \\ 1 = (Ah^2 - Ah^2)/(4) \\ \\ A = -(4)/(h^2)](https://img.qammunity.org/2021/formulas/engineering/college/a91vq1mkfa5v3gjzgj7jx83gfda0cxelkx.png)
replacing
for A in (d); we get:
![B = - ( -(4)/(h^2))h](https://img.qammunity.org/2021/formulas/engineering/college/6iway105t8gkhhjd8xysae8ma2a7sbc4v2.png)
![B = (4)/(h)](https://img.qammunity.org/2021/formulas/engineering/college/7wp1pf4d87442q7gkimbxioixzz7quuspo.png)
replacing the values of A, B and C into the velocity profile expression; we have:
![u = u_(max)(Ay^2+By+C) \\ \\ u = u_(max) (-(4)/(h^2)y^2+(4)/(h)y)](https://img.qammunity.org/2021/formulas/engineering/college/ve0hihh66q23322sahqhxbah7f548y39bd.png)
To determine the volume flow rate; we have:
![Q = AV \\ \\ Q= \int\limits^h_0 (u.bdy)](https://img.qammunity.org/2021/formulas/engineering/college/19rlht7hykijgkxsns3xv5iig2pjdc4vbo.png)
Replacing
![u_(max) (-(4)/(h^2)y^2+(4)/(h)y) \ for \ u](https://img.qammunity.org/2021/formulas/engineering/college/p8cajlswsqf4knun70y74yecoh68mens86.png)
![(Q)/(b) = \int\limits^h_0 u_(max)(-(4)/(h^2) y^2+(4)/(h)y)dy \\ \\ (Q)/(b) = u_(max) \int\limits^h_0 (-(4)/(h^2) y^2+(4)/(h)y)dy \\ \\ (Q)/(b) = u_(max) (-(-4)/(h^2)(y^3)/(3) +(4)/(h)(y^2)/(y))^ ^ h}}__0 }} \\ \\ (Q)/(b) =u_(max) (-(-4)/(h^2)(h^3)/(3) +(4)/(h)(h^2)/(y))^ ^ h}}__0 }} \\ \\ (Q)/(b) = u_(max)((-4h)/(3)+\frac{4h}2} ) \\ \\ (Q)/(b) = u_(max)((-8h+12h)/(6)) \\ \\ (Q)/(b) =u_(max)((4h)/(6))](https://img.qammunity.org/2021/formulas/engineering/college/6ffeb0s8yvl7ochmxlqjb8yng5p5rn0m1v.png)
![(Q)/(b) = u_(max)((2h)/(3)) \\ \\ (Q)/(b) = (2)/(3) u_(max) h](https://img.qammunity.org/2021/formulas/engineering/college/vf2cwhjnn4q68o37510d2porevl0wav1rd.png)
Thus; the volume flow rate per unit depth is:
![(Q)/(b) = (2)/(3) u_(max) h](https://img.qammunity.org/2021/formulas/engineering/college/q9vv5a5tf93jz4urk1h6odeuabecangutx.png)
Consider the discharge ;
Q = VA
where :
A = bh
Q = Vbh
![(Q)/(b)= Vh](https://img.qammunity.org/2021/formulas/engineering/college/32yj7cv9djnn7t4zev36mv7xjmgreaewyt.png)
Also;
![(Q)/(b) = (2)/(3) u_(max) h](https://img.qammunity.org/2021/formulas/engineering/college/q9vv5a5tf93jz4urk1h6odeuabecangutx.png)
Then;
![(2)/(3) u_(max) h = Vh \\ \\ (V)/(u_(max))=(2)/(3)](https://img.qammunity.org/2021/formulas/engineering/college/54xhd4z3awh03i1skpve5y18p9outpcmyl.png)
Thus; the ratio is :
![(V)/(u_(max))=(2)/(3)](https://img.qammunity.org/2021/formulas/engineering/college/5pz8k2zvg7dy6t3k08a178tfveqsroyugs.png)