Answer:
The values of x are 2.41 and -0.41
Explanation:
The given quadratic equation is
![x^2-2x-1=0](https://img.qammunity.org/2021/formulas/mathematics/college/tkhlqjqcf7ejon6z1129ih6d6xf0athvfc.png)
It is required to find the value of x form which the above equation is true. It means we need to solve the above equation for x. The solution of a quadratic equation
are :
![x=(-b\pm √(b^2-4ac) )/(2a)](https://img.qammunity.org/2021/formulas/mathematics/college/fbgkl84j2w1o80jqir10jtm69c0hwwzljf.png)
We have, a = 1, b = -2 and c = 1
Thus, plugging all values in formula, we get :
![x=(-b+ √(b^2-4ac) )/(2a),(-b- √(b^2-4ac) )/(2a)\\\\x=(-(-2)+ √((-2)^2-4(1)(-1)) )/(2(1)),(-(-2)- √((-2)^2-4(1)(-1)) )/(2(1))\\\\x=2.41, -0.41](https://img.qammunity.org/2021/formulas/mathematics/college/kdeb7hpr87o83tviv022i1h6mnvw45jb3m.png)
The values of x are 2.41 and -0.41