289,384 views
1 vote
1 vote
Please solve with explanation high points

Please solve with explanation high points-example-1
User KimCM
by
2.8k points

1 Answer

24 votes
24 votes

Answer:

k = 0, k = 4

Explanation:

Given equation:


y=x^2+kx+3k+4x+4

Rearrange into standard form
ax^2+bx+c:


\implies y=x^2+kx+4x+3k+4


\implies y=x^2+(k+4)x+(3k+4)

Therefore:


a=1, \quad b=(k+4), \quad c=(3k+4)

If the vertex lies in the x-axis, then the quadratic has one (repeating) root at (x, 0). Therefore, we can use the discriminant to find the values of k.

Discriminant


b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0


\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}


\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}


\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}

Therefore, set the discriminant to zero and solve for k:


\implies (k+4)^2-4(1)(3k+4)=0


\implies k^2+8k+16-12k-16=0


\implies k^2-4k=0


\implies k(k-4)=0


\implies k=0, k=4

So the vertex lies in the x-axis when k = 0 or k = 4

User Bjeavons
by
3.0k points