The volume of a regular hexagonal prism is
. So, the closest option is
![1. 166.3 cm^3.](https://img.qammunity.org/2021/formulas/mathematics/high-school/z8vun9gyl5fws6xuazxw3j81e27qbu6zdc.png)
To find the volume of a regular hexagonal prism, you can use the formula:
Volume=
![(3√(3) )/(2) * side length^2 * height](https://img.qammunity.org/2021/formulas/mathematics/high-school/k0blrg16skywq99ih3cpvtwuf6n7ehdqw7.png)
In this case, the side length of the regular hexagon is given as 4 cm, and the height of the prism is also 4 cm. Plug these values into the formula:
Volume=
![(3√(3) )/(2) * 4^2 * 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/u83yrkkb8x1l7ecojbibotu9gtdt1u6994.png)
Volume=
![(3√(3) )/(2) * 16 * 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/ikb1m1kst9ebdm6ect5grx55w8awc63uta.png)
Volume=
![(3√(3) )/(2) * 64](https://img.qammunity.org/2021/formulas/mathematics/high-school/ja84b76t4kd1gm4j6gsr8ir04xftqja2tl.png)
Volume=96√3
Now, you can calculate the numerical value:
Volume≈ 1
![66.3cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqwq8dfbv2ez6k2wwwlexyco5b9stlxaen.png)
So, the closest option is 1. 166.3
![cm^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1w5fjjglifylqe4fudz371dyxior00hq3k.png)
.