64.6k views
4 votes

x^3√(175x^7y^5)

User Efleming
by
5.9k points

1 Answer

2 votes

Answer:


5x^(6)y^(2) √(7xy)

Explanation:

Fistly , you have to know these :


a√(x) + b√(x) = (a+b)√(x) \\\sqrt{a.b^(2) } =b√(a) \\ c\sqrt{a.b^(2) } =(c.b)√(a) \\a√(x) - b√(x) = (a-b)√(x)

About your question:


x^(3)\sqrt{175x^(7)y^(5)}


x^(3)\sqrt{175x^(2).x^(2).x^(2).x.y^(2).y^(2).y}


√(175) =√(25.7) = 5√(7)


5x^(3)\sqrt{7.x^(2).x^(2).x^(2).x.y^(2).y^(2).y}


5x^(3).x.x.x\sqrt{7.x.y^(2).y^(2).y}


5x^(6)\sqrt{7.x.y^(2).y^(2).y}


5x^(6).y.y√(7.x.y)


5x^(6).y^(2)√(7.x.y)

=>
5x^(6)y^(2) √(7xy)<=

Hope it helps ^-^

User Allan Bowe
by
5.8k points