80.9k views
1 vote
Suppose c and d vary inversely, and d = 2 when c = 17.

a. Write an equation that models the variation.
b. Find d when c = 68.
Note: Enter your answer and show all the steps that you use to solve this problem in the space provided.

User Haojen
by
5.1k points

2 Answers

1 vote

Answer and Step-by-step explanation:


Greetings!


I'm~here~to~answer~your~question!


\bold{NOTE:}~We~ can ~say~ that ~two ~variables~ are~ inversely ~proportional ~to ~each` other\\ when ~when ~the ~quantity ~of ~one ~decreases, ~the ~quantity ~of~ the~ other\\ increases.~ For~ example, ~when ~the ~speed ~increases, ~the ~time ~to~ complete\\ a ~trip ~decreases.


\underline{\bold{It~is~given~that:}}


d = 2 \\c = 17


\underline{\bold{Inverse~ equation ~is ~like~ this:}}


\boxed{~~c=(k)/(d)~ ~} ~~where ~k ~is~ the ~constant~ value.


17=(k)/(2)


12 * 2=k


34=k


\underline{\bold{Now~ for ~part~ b:}}


c=(k)/(d)


c * d=k


d=(k)/(c)


d=(34)/(68)


d=0.5


\bold{The ~value ~of~ d~ is~ 0.50}


\underline{\bold{To~check:}}


c=(k)/(d)


c=(34)/(0.5)


c=68


\bold{Thus,~the~answer~is~correct!}

User Donatas M
by
5.5k points
5 votes

Given:

d = 2

c = 17

a)

Inverse equation is like this:

c = k/d

where k is the constant value.

17 = k/2

17 * 2 = k

34 = k

b)

c = k/d

c*d = k

d = k/c

d = 34/68

d = 0.5

The value of d is 0.50

To check:

c = k/d

c = 34 / 0.5

c = 68

User James Allardice
by
5.5k points