105k views
2 votes
What is the answer?

What is the answer?-example-1
User Nati Krisi
by
8.3k points

2 Answers

4 votes


\huge {\boxed{\tt{Solution :}}}

Tell whether the angles are adjacent or vertical.


\sf { 1.) \: Adjacent} \\ \sf { 2.) \: Vertical } \\ \sf { 3.) \:Adjacent}

Find the value of x.

4.)


\sf{{x}^ {\circ} = {110} ^ {\circ} \: [ \because {Vertically \: oppsite \: angles \: are \: equal.}]}

5.)


\sf{ : \implies {x}^ {\circ} + {151} ^ {\circ} ={180} ^ {\circ} \: [\because{Sum\:of \: Adjacent\:angles \: is \: {180} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(180 - 151)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{ {x}^ {\circ} ={29}^ {\circ}}}}

6.)


\sf{ : \implies {x}^ {\circ} + {30} ^ {\circ} ={90} ^ {\circ} \: [ \because {Right\:angle \: is \: {90} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(90 - 30)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{ {x}^ {\circ} ={60}^ {\circ}}}}

7.)


\sf{ : \implies {x}^ {\circ} + {20} ^ {\circ} ={180} ^ {\circ} \: [\because{Sum\:of \: Adjacent\:angles \: is \: {180} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(180 - 20)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{ {x}^ {\circ} ={160}^ {\circ}}}}

8.)


\sf{ : \implies {x}^ {\circ} + {45} ^ {\circ} ={180} ^ {\circ} \: [\because{Sum\:of \: Adjacent\:angles \: is \: {180} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(180 - 45)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{{x}^ {\circ} ={135}^ {\circ}}}}


\rule {307}{2}

User Persijn
by
9.1k points
5 votes

Answer:

Tell whether the angles are adjacent or vertical.

1. Adjacent

2. Vertical

3. Adjacent

Find the value of x.

4. x= 110°

5. x= 29°

6. x= 60°

7. x= 160°

8. x= 135°

A SNEAKER

User Gerrit Geeraerts
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories