105k views
2 votes
What is the answer?

What is the answer?-example-1
User Nati Krisi
by
4.5k points

2 Answers

4 votes


\huge {\boxed{\tt{Solution :}}}

Tell whether the angles are adjacent or vertical.


\sf { 1.) \: Adjacent} \\ \sf { 2.) \: Vertical } \\ \sf { 3.) \:Adjacent}

Find the value of x.

4.)


\sf{{x}^ {\circ} = {110} ^ {\circ} \: [ \because {Vertically \: oppsite \: angles \: are \: equal.}]}

5.)


\sf{ : \implies {x}^ {\circ} + {151} ^ {\circ} ={180} ^ {\circ} \: [\because{Sum\:of \: Adjacent\:angles \: is \: {180} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(180 - 151)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{ {x}^ {\circ} ={29}^ {\circ}}}}

6.)


\sf{ : \implies {x}^ {\circ} + {30} ^ {\circ} ={90} ^ {\circ} \: [ \because {Right\:angle \: is \: {90} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(90 - 30)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{ {x}^ {\circ} ={60}^ {\circ}}}}

7.)


\sf{ : \implies {x}^ {\circ} + {20} ^ {\circ} ={180} ^ {\circ} \: [\because{Sum\:of \: Adjacent\:angles \: is \: {180} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(180 - 20)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{ {x}^ {\circ} ={160}^ {\circ}}}}

8.)


\sf{ : \implies {x}^ {\circ} + {45} ^ {\circ} ={180} ^ {\circ} \: [\because{Sum\:of \: Adjacent\:angles \: is \: {180} ^ {\circ}.}] } \\ \\ \sf{ : \implies {x}^ {\circ} ={(180 - 45)}^ {\circ}} \\ \\ : \implies {\boxed{\tt{{x}^ {\circ} ={135}^ {\circ}}}}


\rule {307}{2}

User Persijn
by
5.0k points
5 votes

Answer:

Tell whether the angles are adjacent or vertical.

1. Adjacent

2. Vertical

3. Adjacent

Find the value of x.

4. x= 110°

5. x= 29°

6. x= 60°

7. x= 160°

8. x= 135°

A SNEAKER

User Gerrit Geeraerts
by
4.8k points