Answer:
By the Empirical Rule, the approximate percentage of cars that remain in service between 69 and 74 months is 13.5%.
Explanation:
The Empirical Rule states that, for a normally distributed(bell-shaped) random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 64
Standard deviation = 5.
Using the empirical rule, what is the approximate percentage of cars that remain in service between 69 and 74 months?
69 = 64 + 1*5
So 69 is one standard deviation above the mean.
74 = 64 + 2*5
So 74 is two standard deviations above the mean.
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
This means that:
95 - 68 = 27% between 1 and 2 standard deviations of the mean.
The normal distribution is symmetric, which means that 27/2 = 13.5% of those are below the mean(within 1 and 2 standard deviations below the mean) and 13.5% of those are above the mean(between 69 and 74).
So
By the Empirical Rule, the approximate percentage of cars that remain in service between 69 and 74 months is 13.5%.