Answer:
![\theta = tan^(-1)((y)/(x))](https://img.qammunity.org/2021/formulas/mathematics/college/9tdogftv5ajwnfmhpj2odcvbdkc413mhok.png)
Explanation:
If we are given components of a vector then we can find the angle between them.
Suppose we are given a vector v
![v = (x, y)](https://img.qammunity.org/2021/formulas/mathematics/college/wom9xyhuko2erjoismtr7liw36eqgidub9.png)
Where x is the horizontal component and y is the vertical component.
The angle can be found by using
![tan(\theta)=(y)/(x)\\\\\theta = tan^(-1)((y)/(x))](https://img.qammunity.org/2021/formulas/mathematics/college/3id3ctfkeabk1uqj88ss79t6ahsvu2xmdu.png)
The magnitude of the vector v can be found using
![v = \sqrt{x^(2)+y^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/8myhz1x7f0l6abdvtctuauzsj1yhqv7f5k.png)
Example:
Lets do a quick example:
![v = (2, 4)](https://img.qammunity.org/2021/formulas/mathematics/college/imgnjibftylobkw0uglcgenkzgjvb08h5f.png)
The angle of the vector is
![tan(\theta)=(4)/(2)\\\\\theta = tan^(-1)((4)/(2))\\\\\theta = 63.43^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/college/8jts6xetl77u74ia25b836m8xdqz4fol12.png)
The magnitude of the vector is
![v = \sqrt{x^(2)+y^(2)}\\\\v = \sqrt{2^(2)+4^(2)}\\\\v = √(4+16)\\\\v = √(20)\\\\v = 4.47](https://img.qammunity.org/2021/formulas/mathematics/college/ut7pe7z88za1zy8yucsjyw9wjyz638rukj.png)