Answer:
86.64% probability that the resulting sample proportion is within .02 of the true proportion.
Explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
For the sampling distribution of a sample proportion p in a sample of size n, we have that
In this problem:
How likely is the resulting sample proportion to be within .02 of the true proportion (i.e., between .18 and .22)?
This is the pvalue of Z when X = 0.22 subtracted by the pvalue of Z when X = 0.18.
X = 0.22
has a pvalue of 0.9332.
X = 0.18
has a pvalue of 0.0668
0.9332 - 0.0668 = 0.8664
86.64% probability that the resulting sample proportion is within .02 of the true proportion.