We have been given that in ΔBCD, the measure of ∠D=90°, the measure of ∠C=42°, and CD = 7.5 feet. We are asked to find the length of DB to nearest tenth of foot.
First of all, we will draw a right triangle using our given information.
We can see from the attachment that DB is opposite side to angle C and CD is adjacent side to angle.
We know that tangent relates opposite side of right triangle to adjacent side of right triangle.
![\text{tan}=\frac{\text{Opposite}}{\text{Adjacent}}](https://img.qammunity.org/2021/formulas/mathematics/college/9peuqgy72wuszhzdky383meholgvntszzn.png)
![\text{tan}(\angle C)=(DB)/(CD)](https://img.qammunity.org/2021/formulas/mathematics/college/pje5r7bjl2ql1fdej3ppbu5m7fxy8kftny.png)
![\text{tan}(42^(\circ))=(DB)/(7.5)](https://img.qammunity.org/2021/formulas/mathematics/college/o1ohyc0q91lm5lc6lewlayi6qdu5091lvt.png)
![7.5\cdot\text{tan}(42^(\circ))=(DB)/(7.5)\cdot 7.5](https://img.qammunity.org/2021/formulas/mathematics/college/ug2lqg0y99z06c4anw6k1wygno8pqce0na.png)
![7.5\cdot\text{tan}(42^(\circ))=DB](https://img.qammunity.org/2021/formulas/mathematics/college/ayw4zozshh9ef3pjivm2a568owx5tddw45.png)
![7.5\cdot0.900404044298=DB](https://img.qammunity.org/2021/formulas/mathematics/college/cz7ad4iz1yzp322f5f37avg3vxqoaxtzd2.png)
![DB=7.5\cdot0.900404044298](https://img.qammunity.org/2021/formulas/mathematics/college/5s09047q4nqr6xvi5dh4o65nu2kwkm1ns4.png)
![DB=6.753030332235\approx 6.8](https://img.qammunity.org/2021/formulas/mathematics/college/3i9umgaqms79z6wakmsqecyogyb5yqm1pk.png)
Therefore, the length of DB is approximately 6.8 feet.