Answer:
a) L = 2.10x10⁴⁰ kg*m²/s
b) τ = 1.12x10²⁴ N.m
Step-by-step explanation:
a) The angular momentum (L) of the pulsar can be calculated using the following equation:
![L = I \omega](https://img.qammunity.org/2021/formulas/physics/college/9w7z94rxu1x10jsj02e1zj3nqlhb1e9166.png)
Where:
I: inertia momentum
ω: angular velocity
First we need to calculate ω and I. The angular velocity can be calculated as follows:
![\omega = (2 \pi)/(T)](https://img.qammunity.org/2021/formulas/physics/college/xrvzhl64dh8f31dvel47qvpvgjt3obf522.png)
Where:
T: is the period = 33.5x10⁻³ s
![\omega = (2 \pi)/(T) = (2 \pi)/(33.5 \cdot 10^(-3) s) = 187.56 rad/s](https://img.qammunity.org/2021/formulas/physics/college/tzm8ne321r6ojyzk8leektwpj6k7toiux4.png)
The inertia moment of the pulsar can be calculated using the following relation:
![I = (2)/(5)mr^(2)](https://img.qammunity.org/2021/formulas/physics/college/yqdbbeb4rpu774velix2c1hdf0y9zgyjh4.png)
Where:
m: is the mass of the pulsar = 2.8x10³⁰ kg
r: is the radius = 10.0 km
![I = (2)/(5)mr^(2) = (2)/(5)2.8\cdot 10^(30) kg*(10\cdot 10^(3) m)^(2) = 1.12 \cdot 10^(38) kg*m^(2)](https://img.qammunity.org/2021/formulas/physics/college/o3don3znziifz6d7pah4wa3ie074oavxg2.png)
Now, the angular momentum of the pulsar is:
![L = I \omega = 1.12 \cdot 10^(38) kg*m^(2)*187.56 rad/s = 2.10 \cdot 10^(40) kg*m^(2)*s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/tkkyvn11sbk1xayp70baq340xvx9byfibd.png)
b) If the angular velocity decreases at a rate of 10⁻¹⁴ rad/s², the torque of the pulsar is:
![\tau = I*\alpha](https://img.qammunity.org/2021/formulas/physics/college/1pdb85eop9xqh7hcqcki93o2jfdqylq4kt.png)
Where:
α: is the angular acceleration = 10⁻¹⁴ rad/s²
![\tau = I*\alpha = 1.12 \cdot 10^(38) kg*m^(2) * 10^(-14) rad*s^(-2) = 1.12 \cdot 10^(24) N.m](https://img.qammunity.org/2021/formulas/physics/college/cn7kdpi4bevii2oxls0tl5czyvc8zh9cg7.png)
I hope it helps you!