Final answer:
The average exhaust speed of the engine is calculated to be approximately 786.929 m/s, and the magnitude of the final velocity of the rocket if fired in outer space is roughly 94.916 m/s.
Step-by-step explanation:
To calculate the average exhaust speed (v_ex), we can use the impulse-momentum theorem, which states that impulse is equal to the change in momentum of the system. Impulse is given by the product of the average force exerted by the engine (thrust) and the time interval during which the thrust is applied. If all the fuel is consumed, the change in mass (Δm) is the mass of the fuel.
Impulse = Thrust × Time = 5.26 N × 1.90 s = 9.994 N·s
The momentum change is equal to the mass of the fuel expelled times the average exhaust speed.
Δ(momentum) = Δm × v_ex
Substituting the impulse and solving for v_ex, we get:
v_ex = Impulse / Δm
v_ex = 9.994 N·s / 0.0127 kg = 786.929 m/s
Part B: Final Velocity of the Rocket in Space
The final velocity (V_final) of the rocket in space can be determined using the rocket equation, also known as Tsiolkovsky's rocket equation:
V_final = v_ex × ln(m_initial / m_final)
Where:
- m_initial = mass of the rocket with fuel = 25.0 g + 63.0 g = 88.0 g = 0.088 kg
- m_final = mass of the rocket without fuel = 25.0 g - 12.7 g + 63.0 g = 75.3 g = 0.0753 kg
Calculating the final velocity:
V_final = 786.929 m/s × ln(0.088 kg / 0.0753 kg) ≈ 94.916 m/s