54.1k views
5 votes
Which expression is equivalent to
\sqrt128x^(8) y^(3) z^(9)? Assume
y\geq 0 and
z\geq 0.

A -
2x^(2) z^(2) \sqrt8y^(3) z

B -
4x^(2) yz^(3)\sqrt 2x^(2)

C -
8x^(4) yz^(4) \sqrt2yz

D -
64x^(4)yz^(4) \sqrt2yz

2 Answers

6 votes

Answer:

C on edge2020.

Explanation:

Trust me on this one.

:D

User Keshava GN
by
5.1k points
6 votes

Answer:


(C)8x^4z^4√(2yz)

Explanation:

We want to determine an expression equivalent to:
√(128x^8y^3z^9)


√(ab) =√(a)*√(b)

Therefore:


√(128x^8y^3z^9)=√(128)*√(x^8)*√(y^3)*√(z^9)


=√(64*2)*\sqrt{x^(4*2)}*\sqrt{y^(2+1)}*\sqrt{z^(8+1)}\\=8√(2)*\sqrt{x^(4*2)}*√(y^2*y)*\sqrt{z^(8)*z}}


=8√(2)*x^4*y √(y)*z^4√(z)\\=8*x^4*z^4*√(2)*√(y)*√(z)\\=8x^4z^4√(2yz)

User Richard Jessop
by
4.4k points