14.9k views
0 votes
Find the volume of the cone

Find the volume of the cone-example-1

2 Answers

4 votes

Answer:

The volume of cone is 476.61 cm³.

Step-by-step explanation:

Solution :

As per given question we have provided :


  • \green\star Slant height = 14 cm

  • \green\star Radius = 6 cm


\begin{gathered}\end{gathered}

Firstly, finding the height of cone by substituting the values in the formula :


{\longrightarrow{\pmb{\sf{l = \sqrt{(r)^(2) + {(h)}^(2) }}}}}


  • \orange\star Slant height (l) = 14 cm

  • \orange\star Radius (r) = 6 cm

  • \orange\star Height (h) = ?

Substituting all the given values in the formula to find the height of cone :


\begin{gathered}\begin{array}{l}\quad{\longrightarrow{\sf{l = \sqrt{(r)^(2) + {(h)}^(2)}}}}\\\\\quad{\longrightarrow{\sf{{(l)}^(2) =(r)^(2) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(14)}^(2) =(6)^(2) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(14 * 14)} =(6 * 6) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(196)} =(36) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^(2) = 196 - 36}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^(2) = 160}}}\\\\\quad{\longrightarrow{\sf{h = √(160)}}}\\\\\quad{\longrightarrow{\sf{h = 12.65}}}\\\\\quad{\star{\underline{\boxed{\sf{\purple{h = 12.65}}}}}} \end{array}\end{gathered}

Hence, the height of cone is 12.65 cm.


\begin{gathered}\end{gathered}

Now, finding the volume of cone by substituting the values in the formula :


\longrightarrow{\pmb{\sf{V_((Cone)) = (1)/(3)\pi{r}^(2)h}}}


  • \orange\star V = Volume

  • \orange\star π = 3.14

  • \orange\star r = radius

  • \orange\star h = height

Substituting all the given values in the formula to find the volume of cone :


\begin{gathered}\begin{array}{l}\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(6)}^(2) 12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(6 * 6)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(36)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}}* 3.14 * \cancel{36}* 12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = 3.14 * 12 * 12.65}}\\ \\\quad\longrightarrow{\sf{Volume_((Cone)) = 476.61 \: {cm}^(3)}}\\\\\quad\star{\underline{\boxed{\sf{\pink{Volume_((Cone)) = 476.61 \: {cm}^(3)}}}}}\end{array}\end{gathered}

Hence, the volume of cone is 476.61 cm³.


\rule{300}{2.5}

User Kizaru
by
3.5k points
5 votes

Answer:

Explanation:

slant height l = 14cm

r = 6 cm

Use Pythagorean theorem.

h² + 6² = 14²

h² + 36 = 196

h² = 196 - 36

h² = 160

h = √160

h = 12.65 cm


Volume=(1)/(3)\pi r^(2)h\\\\=(1)/(3)*3.14*6*6*12.64\\\\

= 476.61 cubic cm

User Onyi
by
3.4k points