Answer:
The volume of cone is 476.61 cm³.
Step-by-step explanation:
Solution :
As per given question we have provided :
Slant height = 14 cm
Radius = 6 cm
![\begin{gathered}\end{gathered}](https://img.qammunity.org/2021/formulas/mathematics/high-school/tfjuynmbmpvscparauknr09828vu64oflb.png)
Firstly, finding the height of cone by substituting the values in the formula :
![{\longrightarrow{\pmb{\sf{l = \sqrt{(r)^(2) + {(h)}^(2) }}}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/r7179tleq1el6p1yo65fga9d78bott1p4h.png)
Slant height (l) = 14 cm
Radius (r) = 6 cm
Height (h) = ?
Substituting all the given values in the formula to find the height of cone :
![\begin{gathered}\begin{array}{l}\quad{\longrightarrow{\sf{l = \sqrt{(r)^(2) + {(h)}^(2)}}}}\\\\\quad{\longrightarrow{\sf{{(l)}^(2) =(r)^(2) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(14)}^(2) =(6)^(2) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(14 * 14)} =(6 * 6) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(196)} =(36) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^(2) = 196 - 36}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^(2) = 160}}}\\\\\quad{\longrightarrow{\sf{h = √(160)}}}\\\\\quad{\longrightarrow{\sf{h = 12.65}}}\\\\\quad{\star{\underline{\boxed{\sf{\purple{h = 12.65}}}}}} \end{array}\end{gathered}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6av0f31mh5rwg2xhk12noy7p8dpjxfch24.png)
Hence, the height of cone is 12.65 cm.
![\begin{gathered}\end{gathered}](https://img.qammunity.org/2021/formulas/mathematics/high-school/tfjuynmbmpvscparauknr09828vu64oflb.png)
Now, finding the volume of cone by substituting the values in the formula :
![\longrightarrow{\pmb{\sf{V_((Cone)) = (1)/(3)\pi{r}^(2)h}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/kdotb6riqve84uxdv3j7gcmx0x6l2huqx5.png)
V = Volume
π = 3.14
r = radius
h = height
Substituting all the given values in the formula to find the volume of cone :
![\begin{gathered}\begin{array}{l}\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(6)}^(2) 12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(6 * 6)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(36)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}}* 3.14 * \cancel{36}* 12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = 3.14 * 12 * 12.65}}\\ \\\quad\longrightarrow{\sf{Volume_((Cone)) = 476.61 \: {cm}^(3)}}\\\\\quad\star{\underline{\boxed{\sf{\pink{Volume_((Cone)) = 476.61 \: {cm}^(3)}}}}}\end{array}\end{gathered}](https://img.qammunity.org/2021/formulas/mathematics/high-school/wrnicotmzbjzkfqhwgk2e1pezpn8zi35tb.png)
Hence, the volume of cone is 476.61 cm³.
![\rule{300}{2.5}](https://img.qammunity.org/2021/formulas/mathematics/high-school/rd7ews57ut5frphhfmoo62zkztor4rkuft.png)