14.9k views
0 votes
Find the volume of the cone

Find the volume of the cone-example-1

2 Answers

4 votes

Answer:

The volume of cone is 476.61 cm³.

Step-by-step explanation:

Solution :

As per given question we have provided :


  • \green\star Slant height = 14 cm

  • \green\star Radius = 6 cm


\begin{gathered}\end{gathered}

Firstly, finding the height of cone by substituting the values in the formula :


{\longrightarrow{\pmb{\sf{l = \sqrt{(r)^(2) + {(h)}^(2) }}}}}


  • \orange\star Slant height (l) = 14 cm

  • \orange\star Radius (r) = 6 cm

  • \orange\star Height (h) = ?

Substituting all the given values in the formula to find the height of cone :


\begin{gathered}\begin{array}{l}\quad{\longrightarrow{\sf{l = \sqrt{(r)^(2) + {(h)}^(2)}}}}\\\\\quad{\longrightarrow{\sf{{(l)}^(2) =(r)^(2) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(14)}^(2) =(6)^(2) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(14 * 14)} =(6 * 6) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{{(196)} =(36) + {(h)}^(2)}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^(2) = 196 - 36}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^(2) = 160}}}\\\\\quad{\longrightarrow{\sf{h = √(160)}}}\\\\\quad{\longrightarrow{\sf{h = 12.65}}}\\\\\quad{\star{\underline{\boxed{\sf{\purple{h = 12.65}}}}}} \end{array}\end{gathered}

Hence, the height of cone is 12.65 cm.


\begin{gathered}\end{gathered}

Now, finding the volume of cone by substituting the values in the formula :


\longrightarrow{\pmb{\sf{V_((Cone)) = (1)/(3)\pi{r}^(2)h}}}


  • \orange\star V = Volume

  • \orange\star π = 3.14

  • \orange\star r = radius

  • \orange\star h = height

Substituting all the given values in the formula to find the volume of cone :


\begin{gathered}\begin{array}{l}\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(6)}^(2) 12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(6 * 6)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(36)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}}* 3.14 * \cancel{36}* 12.65}}\\\\\quad\longrightarrow{\sf{Volume_((Cone)) = 3.14 * 12 * 12.65}}\\ \\\quad\longrightarrow{\sf{Volume_((Cone)) = 476.61 \: {cm}^(3)}}\\\\\quad\star{\underline{\boxed{\sf{\pink{Volume_((Cone)) = 476.61 \: {cm}^(3)}}}}}\end{array}\end{gathered}

Hence, the volume of cone is 476.61 cm³.


\rule{300}{2.5}

User Kizaru
by
8.2k points
5 votes

Answer:

Explanation:

slant height l = 14cm

r = 6 cm

Use Pythagorean theorem.

h² + 6² = 14²

h² + 36 = 196

h² = 196 - 36

h² = 160

h = √160

h = 12.65 cm


Volume=(1)/(3)\pi r^(2)h\\\\=(1)/(3)*3.14*6*6*12.64\\\\

= 476.61 cubic cm

User Onyi
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories