Answer:
Step-by-step explanation:
This problem is based on conservation of rotational momentum.
Moment of inertia of rod about its center
= 1/12 m l² , m is mass of the rod and l is its length .
= 1 / 12 x 4.6 x .11²
I = .004638 kg m²
The angular momentum of the bullet about the center of rod = mvr
where m is mass , v is perpendicular component of velocity of bullet and r is distance of point of impact of bullet fro center .
5 x 10⁻³ x v sin60 x .11 x .5 where v is velocity of bullet
According to law of conservation of angular momentum
5 x 10⁻³ x v sin60 x .11 x .5 = ( I + mr²)ω , where ω is angular velocity of bullet rod system and ( I + mr²) is moment of inertia of bullet rod system .
.238 x 10⁻³ v = ( .004638 + 5 x 10⁻³ x .11² x .5² ) x 12
.238 x 10⁻³ v = ( .004638 + .000015125 ) x 12
.238 x 10⁻³ v = 55.8375 x 10⁻³
.238 v = 55.8375
v = 234.6 m /s