First integral:
Parameterize -C (the reverse of C) by
where
. Then the contour integral is
![\displaystyle \int_(-C) (z^2 - z + 2) \, dz = \int_0^(\frac\pi2) \left(e^(2it) - e^(it) + 2\right) i e^(it) \, dt](https://img.qammunity.org/2023/formulas/mathematics/college/1bqyxordic0xupmdbtvhfi65lkgwbduoga.png)
![\displaystyle = i \int_0^(\frac\pi2) \left(e^(3it) - e^(2it) + 2e^(it)\left) \, dt](https://img.qammunity.org/2023/formulas/mathematics/college/jkzu0z6bgnw8npy1aw96rc4plaqk26z031.png)
![\displaystyle = i \left(\frac1{3i} e^(3it) - \frac1{2i} e^(2it) + \frac2i e^(it)\right) \bigg|_0^(\frac\pi2)](https://img.qammunity.org/2023/formulas/mathematics/college/uc3ex5q9b6fhyxd71fl97pb22bq5ape09r.png)
![\displaystyle = \left(\frac13 e^(3it) - \frac12 e^(2it) + 2 e^(it)\right) \bigg|_0^(\frac\pi2)](https://img.qammunity.org/2023/formulas/mathematics/college/xpcplgwkp33tbsxmxba1v891y5r7draj3b.png)
![\displaystyle = -\frac43 + \frac53i](https://img.qammunity.org/2023/formulas/mathematics/college/8lo4ds0mw44qrvfe7tvsdiogpfiju24vr1.png)
Then
![\displaystyle \int_C (z^2-z+2) \, dz = -\int_(-C) (z^2+z-2) \, dz = \boxed{\frac43 - \frac53i}](https://img.qammunity.org/2023/formulas/mathematics/college/wxnns1wbbgt98hwu2wo1u59c22aj7bgsdt.png)
Second integral:
The integrand has a pole of order 2 at z = 3i which is contained in C. By the residue theorem,
![\displaystyle \int_C (z^2+z)/((z-3i)^2) \, dz = 2\pi i\, \mathrm{Res}\left((z^2+z)/((z-3i)^2), z=3i\right)](https://img.qammunity.org/2023/formulas/mathematics/college/o9yyb6a21nvvwj0jd5bz9vvbj5uu4fckj5.png)
Compute the residue:
![\displaystyle \mathrm{Res}\left((z^2+z)/((z-3i)^2),z=3i\right) = \lim_(z\to3i) (d)/(dz)\left[z^2+z\right] = \lim_(z\to3i) (2z+1) = 1 + 6i](https://img.qammunity.org/2023/formulas/mathematics/college/dw9h3xuyg6vxrvstzlh9nw5v4vu2b100m2.png)
Then the value of the integral is
![\displaystyle \int_C (z^2+z)/((z-3i)^2) \, dz = 2\pi i (1 + 6i) = \boxed{-12\pi + 2\pi i}](https://img.qammunity.org/2023/formulas/mathematics/college/l9c8evf6xqtyail0jpqt8og67d124z8b6i.png)