188k views
16 votes
Please slove the problem in the below pic

Please slove the problem in the below pic-example-1

1 Answer

10 votes

First integral:

Parameterize -C (the reverse of C) by
z = e^(it) where
0\le t \le\frac\pi2. Then the contour integral is


\displaystyle \int_(-C) (z^2 - z + 2) \, dz = \int_0^(\frac\pi2) \left(e^(2it) - e^(it) + 2\right) i e^(it) \, dt


\displaystyle = i \int_0^(\frac\pi2) \left(e^(3it) - e^(2it) + 2e^(it)\left) \, dt


\displaystyle = i \left(\frac1{3i} e^(3it) - \frac1{2i} e^(2it) + \frac2i e^(it)\right) \bigg|_0^(\frac\pi2)


\displaystyle = \left(\frac13 e^(3it) - \frac12 e^(2it) + 2 e^(it)\right) \bigg|_0^(\frac\pi2)


\displaystyle = -\frac43 + \frac53i

Then


\displaystyle \int_C (z^2-z+2) \, dz = -\int_(-C) (z^2+z-2) \, dz = \boxed{\frac43 - \frac53i}

Second integral:

The integrand has a pole of order 2 at z = 3i which is contained in C. By the residue theorem,


\displaystyle \int_C (z^2+z)/((z-3i)^2) \, dz = 2\pi i\, \mathrm{Res}\left((z^2+z)/((z-3i)^2), z=3i\right)

Compute the residue:


\displaystyle \mathrm{Res}\left((z^2+z)/((z-3i)^2),z=3i\right) = \lim_(z\to3i) (d)/(dz)\left[z^2+z\right] = \lim_(z\to3i) (2z+1) = 1 + 6i

Then the value of the integral is


\displaystyle \int_C (z^2+z)/((z-3i)^2) \, dz = 2\pi i (1 + 6i) = \boxed{-12\pi + 2\pi i}

User Pavel Tkackenko
by
4.3k points