58.4k views
1 vote
Find dy/dx at (0,0) if x^2cosy-sin(y+4x)+ln(1+x)=0

User Yosep Kim
by
8.1k points

1 Answer

6 votes


x^2\cos y-\sin(y+4x)+\ln(1+x)=0

Differentiate both sides with respect to
x, treating
y as a function of
x:


2x\cos y-x^2\sin y(\mathrm dy)/(\mathrm dx)-\cos(y+4x)\left((\mathrm dy)/(\mathrm dx)+4\right)+\frac1{1+x}=0


2x\cos y-4\cos(y+4x)-\left(x^2\sin y+\cos(y+4x)\right)(\mathrm dy)/(\mathrm dx)+\frac1{1+x}=0


\left(x^2\sin y+\cos(y+4x)\right)(\mathrm dy)/(\mathrm dx)=2x\cos y-4\cos(y+4x)+\frac1{1+x}


(\mathrm dy)/(\mathrm dx)=\frac{2x\cos y-4\cos(y+4x)+\frac1{1+x}}{x^2\sin y+\cos(y+4x)}

At the point (0, 0), the derivative is


(\mathrm dy)/(\mathrm dx)(0,0)=(0-4\cos0+1)/(0+\cos0)=-3

User Sjishan
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories