7.4k views
0 votes
Which equation is equivalent to
log4 + log(x + 2) = 1?

User Xiaoming
by
4.1k points

2 Answers

3 votes

Answer:


$x=(1)/(2)$

Explanation:

If it was not mentioned, the base is 10.


\log _(10)4+\log _(10)\left(x+2\right)=1


\log _(10)4+\log _(10)\left(x+2\right)-\log _(10)4=1-\log _(10)4


\log _(10)\left(x+2\right)=1-\log _(10)4


\log _(10)\left(x+2\right)=1-2\log _(10)2

Considering
\mathrm{if} \log _a\left(b\right)=c\:\mathrm{then}\:b=a^c


$x+2=10^{1-2\log _(10)\left2$


x+2=10^{-2\log _(10)\left(2\right)}\cdot \:10^1


x+2=\left(10^{\log _(10)\left(2\right)}\right)^(-2)\cdot \:10^1


x+2=2^(-2)\cdot \:10^1


$x+2=10\cdot (1)/(2^2)$


$x+2=(10)/(2^2)$


$x+2=(5)/(2)$


$x+2-2=(5)/(2)-2$


$x=(1)/(2)$

User CiaPan
by
4.6k points
6 votes

Answer:

The correct answer is 4x + 8 = 101 on edge 2020. The second part is x=1/2

Explanation:

User Bootsz
by
4.6k points