Answer:
,
,
![z^{(1)/(3) }= 2.945 - i\cdot 0.571](https://img.qammunity.org/2021/formulas/physics/middle-school/1n82ovr9bexm8bfisi52vhk79im2l62clu.png)
Step-by-step explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
![z^{(1)/(n) } = r^{(1)/(n) }\cdot \left[\cos\left((x + 2\pi\cdot k)/(n) \right) + i\cdot \sin\left((x+2\pi\cdot k)/(n) \right)\right]](https://img.qammunity.org/2021/formulas/physics/middle-school/y9xyslpquqvt51aeaqofmsft14ayxe6674.png)
Where angles are measured in radians and k represents an integer between
and
.
The magnitude of the complex number is
and the equivalent angular value is
. The set of cubic roots are, respectively:
k = 0
![z^{(1)/(3) } = 3\cdot \left[\cos \left((1.817\pi)/(3) \right)+i\cdot \sin\left((1.817\pi)/(3) \right)]](https://img.qammunity.org/2021/formulas/physics/middle-school/o9sg2lbr4peoj8hiumd5za55l5mvv2b4iw.png)
![z^{(1)/(3) }= -0.978 + i\cdot 2.836](https://img.qammunity.org/2021/formulas/physics/middle-school/798rh4kohmvn4xhtj6pst6kp01gehvg5ih.png)
k = 1
![z^{(1)/(3) } = 3\cdot \left[\cos \left((3.817\pi)/(3) \right)+i\cdot \sin\left((3.817\pi)/(3) \right)]](https://img.qammunity.org/2021/formulas/physics/middle-school/r6g0g1yjd9rp17q4xheyza5k050bip1ytw.png)
![z^{(1)/(3) }= -1.967 - i\cdot 2.265](https://img.qammunity.org/2021/formulas/physics/middle-school/1oewkvz7k8kv8pbru9030ej7yzumy1umi4.png)
k = 2
![z^{(1)/(3) } = 3\cdot \left[\cos \left((5.817\pi)/(3) \right)+i\cdot \sin\left((5.817\pi)/(3) \right)]](https://img.qammunity.org/2021/formulas/physics/middle-school/1cujednzbzflw68z3jx57oc8jvl03xnryy.png)
![z^{(1)/(3) }= 2.945 - i\cdot 0.571](https://img.qammunity.org/2021/formulas/physics/middle-school/1n82ovr9bexm8bfisi52vhk79im2l62clu.png)