73.9k views
4 votes
Find the cube roots of 27(cos 327° + i sin 327° ). Write the answer in trigonometric form.

User Nesvarbu
by
5.3k points

1 Answer

3 votes

Answer:


z^{(1)/(3) }= -0.978 + i\cdot 2.836,
z^{(1)/(3) }= -1.967 - i\cdot 2.265,
z^{(1)/(3) }= 2.945 - i\cdot 0.571

Step-by-step explanation:

The cube root of the complex number can determined by the following De Moivre's Formula:


z^{(1)/(n) } = r^{(1)/(n) }\cdot \left[\cos\left((x + 2\pi\cdot k)/(n) \right) + i\cdot \sin\left((x+2\pi\cdot k)/(n) \right)\right]

Where angles are measured in radians and k represents an integer between
0 and
n - 1.

The magnitude of the complex number is
27 and the equivalent angular value is
1.817\pi. The set of cubic roots are, respectively:

k = 0


z^{(1)/(3) } = 3\cdot \left[\cos \left((1.817\pi)/(3) \right)+i\cdot \sin\left((1.817\pi)/(3) \right)]


z^{(1)/(3) }= -0.978 + i\cdot 2.836

k = 1


z^{(1)/(3) } = 3\cdot \left[\cos \left((3.817\pi)/(3) \right)+i\cdot \sin\left((3.817\pi)/(3) \right)]


z^{(1)/(3) }= -1.967 - i\cdot 2.265

k = 2


z^{(1)/(3) } = 3\cdot \left[\cos \left((5.817\pi)/(3) \right)+i\cdot \sin\left((5.817\pi)/(3) \right)]


z^{(1)/(3) }= 2.945 - i\cdot 0.571

User Fmg
by
5.3k points