Answer:
![\dot Q_(out) = 13369.104\,kW](https://img.qammunity.org/2021/formulas/engineering/college/3jvyjtlechml862yw799ib90i8ax44cce2.png)
Step-by-step explanation:
The turbine is modelled after the First Law of Thermodynamics:
![-\dot Q_(out) - \dot W_(out) + \dot H_(in) - \dot H_(out) + \dot K_(in) - \dot K_(out) + \dot U_(in) - \dot U_(out) = 0](https://img.qammunity.org/2021/formulas/engineering/college/1nny4lvwsm3dah7z7jkaxxjyiot0sdzv6o.png)
The rate of heat transfer between the turbine and its surroundings is:
![\dot Q_(out) = \dot H_(in)-\dot H_(out) + \dot K_(in) - \dot K_(out) - \dot W_(out) + \dot U_(in) - \dot U_(out)](https://img.qammunity.org/2021/formulas/engineering/college/agozg828dh89se0i2y1s2mmkyysqlraaaa.png)
The specific enthalpies at inlet and outlet are, respectively:
![h_(in) = 3076.41\,(kJ)/(kg)](https://img.qammunity.org/2021/formulas/engineering/college/nyfylhzh65i9qdmpvn6jtdydlfj2faqry4.png)
![h_(out) = 2675.0\,(kJ)/(kg)](https://img.qammunity.org/2021/formulas/engineering/college/6t3gg8oomuswa9igx7mx1hk4klgtyj693i.png)
The required output is:
![\dot Q_(out) = \left(8\,(kg)/(s) \right)\cdot \left\{3076.41\,(kJ)/(kg)-2675.0\,(kJ)/(kg)+(1)/(2)\cdot \left[\left(65\,(m)/(s) \right)^(2)-\left(42\,(m)/(s) \right)^(2)\right] + \left(9.807\,(m)/(s^(2)) \right)\cdot (4\,m) \right\} - 8000\,kW](https://img.qammunity.org/2021/formulas/engineering/college/i75ag8y6h0allcj23x54663x3jmjgchubj.png)
![\dot Q_(out) = 13369.104\,kW](https://img.qammunity.org/2021/formulas/engineering/college/3jvyjtlechml862yw799ib90i8ax44cce2.png)