Final answer:
To calculate 1/3 x 1/3 x 1/3, you're effectively cubing 1/3, which results in (1/3)^3 or 1^3/3^3, simplifying to 1/27.
Step-by-step explanation:
The student is asking about the multiplication of fractions and exponentiation rules in algebra. To solve 1/3 x 1/3 x 1/3, you multiply the fractions normally. When multiplying identical fractions, we simply raise the fraction to the power of the number of times it is being multiplied by itself. So 1/3 x 1/3 x 1/3 is equivalent to (1/3)^3. When you raise a fraction to an exponent, you raise both the numerator and the denominator to that power. Therefore, (1/3)^3 equals 1^3/3^3, which simplifies to 1/27.
The example given with 3².35 relates to the rules of exponents, which state that when multiplying exponential terms with the same base, you can add the exponents (x^p x x^q = x^(p+q)). For the concept of cubing of exponentials, you would cube the base and multiply the existing exponent by 3 to execute the operation effectively.