186k views
2 votes
Use Demoivres Theorem to find (1 + i) 20.
a. 1024i
b. -1024
C.-1024
D.1024

User Drs
by
4.5k points

2 Answers

2 votes

C on e2020

i did it *dab*

User Matthew Cawley
by
4.5k points
4 votes

Answer:

-1024

Explanation:

Moivre's theorem allows to easily obtain trigonometric formulas that express the sine and cosine of a multiple angle as a function of the sine and cosine of a simple angle.

De Moivre's theorem can be applied to any complex number
z

Where:


z\in Z

Let:


(1+i)=z\\n=20

According to Demoivres Theorem, If:


z=||z||(cos(\theta)+isin(\theta))

Then:


z^n=||z||^n(cos(n\theta)+isin(n\theta))

For a complex number
z:


z=a+bi

Its magnitude and angle are given by:


||z||=√(a^2+b^2) \\\\\theta=arctan((b)/(a) )

So:


||z||=√(1^2+1^2) =√(2)


\theta=arctan((1)/(1) )=45^(\circ)

Therefore, using De Moivre's theorem:


z^n=(√(2) )^(20)(cos(20*45)+isin(20*45))\\\\z^n=(√(2) )^(20)(cos(900)+isin(900))\\\\z^n=1024(-1+i(0))\\\\z^n=1024(-1)\\\\z^n=(1+i)^(20)=-1024

User Boris Nikolic
by
5.0k points