220k views
11 votes
Find the functional values g (-3), g (0), and g (5) for the compound function.

g (x) = 7 if x ≤ 0
1 over x if x > 0

User Simon Lee
by
6.1k points

2 Answers

11 votes


\sf\f(x)=\grey{\begin{cases}\rm 7\quad ,x\geqslant 0\\ \rm (1)/(x)\quad ,x>0\end{cases}}

So

  • -3,0 ≤0
  • 5>0

Hence

  • g(-3)=g(0)=7
  • g(5)=1/5
6 votes

Answer:


g(-3)=7


g(0)=7


g(5)=\frac15

Explanation:


g(x) =\begin{cases}7 & \text{if } x \leq 0 \\ \\(1)/(x) & \text{if } x > 0\end{cases}

This means:

  • when x is equal to zero or less than zero, g(x) will always be 7.
  • when x is more than zero, g(x) is
    (1)/(x)


\implies g(-3)=7


\implies g(0)=7


\implies g(5)=\frac15

User Hitesh Kansagara
by
6.6k points