94.6k views
25 votes
Mathematics question (Optional math) ​

Mathematics question (Optional math) ​-example-1

2 Answers

5 votes

Answer:


\large{\pink{\underline\textsf{To Prove :-}}}


\sqrt{ (1 + \sin \theta )/(1 - \sin \theta ) } = \sec \theta + \tan \theta


\huge{\orange{\underline{\textsf{Solution :-}}}}


\sf \sqrt{ (1 + \sin \theta )/(1 - \sin \theta ) }

  • First we have to rationalize it to remove the square root
  • Now we will multiply √1+sinθ both sides


\sqrt{ (1 + \sin \theta )/(1 - \sin \theta ) } * \sqrt{ (1 + \sin \theta )/(1 - \sin \theta ) } \\ \sqrt{ \frac{ {(1 + \sin \theta) }^(2) }{(1 + \sin \theta)(1 - \sin \theta) } } \\ \sqrt{ \frac{ {(1 + \sin \theta) }^(2) }{1 - { { \sin}^(2) \theta } } }

  • We know that sin²θ + cos²θ = 1
  • so cos²θ = 1 - sin²θ


\sqrt{ \frac{( {1 + \sin \theta })^(2) }{ { \cos}^(2) \theta} } \\ (1 + \sin \theta )/( \cos \theta ) \\ (1)/( \cos \theta) + ( \sin \theta )/( \cos \theta )


\sf{\red { \sec \theta + \tan \theta}}


\sf \huge \purple {HENCE \: \: PROVED! }

User Besworks
by
8.3k points
3 votes

Answer:

Hi mate!

To prove:-


\bf \sqrt{ (1 + \sin( \theta))/(1 - \sin( \theta)) } = \sec( \theta) - \tan( \theta)

Explanation:

By taking LHS,


\maltese \: \: \large \bf \sqrt{ (1 + \sin( \theta))/(1 - \sin( \theta)) }

By rationalisation method,


: \longrightarrow \bf \sqrt{ (1 + \sin( \theta))/(1 - \sin( \theta)) * (1 + \sin( \theta))/(1 + \sin( \theta)) } \\ \\ : \longrightarrow \frac{ {( √(1 + \sin\theta )) }^(2) }{( √(1 - \sin( \theta)))(√(1 + \sin( \theta))) } \\ \\ : \longrightarrow \frac{ {( √(1 + \sin\theta )) }^(2) }{ \sqrt{ {1}^(2) - { \sin}^(2) \theta } } \: \\ \\ : \longrightarrow \: (1 + \sin \theta)/( \cos \theta ) \\ \\ \longrightarrow \: (1)/( \cos \theta ) + ( \sin \theta)/( \cos \theta)


\: \: \: \: \: \bigg\lgroup \because \: (1)/( \cos \theta )\: = \sec \theta \: \\ \: \: \: \: \: \: \: \: \: \: \: ( \sin \theta)/( \cos \theta) = \tan \theta \bigg \rgroup


\implies \boxed{\pink{ \sec \theta + \tan \theta }}

Now taking RHS


\sf \sec \theta + \tan \theta


\implies \: \: (1)/( \cos \theta ) + ( \sin \theta)/( \cos \theta) \\ \\ \implies (1 + \sin \theta )/( \cos \theta )

Hence, proved

User Ryan Heitner
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories