Answer:
The concentration of Ag+ that remains is 1.76 *10^-22 M
Step-by-step explanation:
Step 1: Data given
Volume of AgNO3 = 110.0 mL = 0.110 L
Molarity of AgNO3 = 2.7 * 10^-3 M
Volume of NaCN = 220.0 mL = 0.220 L
Molarity of NaCN = 0.11 M
Kf of Ag(CN)2− = 1.0 * 10^21
Step 2: Calculate moles AgNO3
Moles AgNO3 = molarity AgNO3 * volume
Moles AgNO3 = 2.7 * 10^-3 M * 0.110 L
Moles AgNO3 = 0.000297 moles
Step 3: Calculate moles Ag+
For 1 mol AgNO3 we have 1 mol Ag+ and 1 mol NO3-
For 0.000297 moles AgNO3 we have 0.000297 moles Ag+
Step 4: Calculate moles NaCN
Moles NaCN = 0.11 M * 0.220 L
Moles NaCN = 0.0242 moles
Step 5: Calculate moles CN-
For 1 mol NaCN we have 1 mol CN-
For 0.0242 moles NaCN we have 0.0242 moles CN-
Step 6: The balanced equation
Ag+ + 2CN- → Ag(CN)2-
Step 7: Calculate the limiting reactant
For 1 mol Ag+ we need 2 moles CN- to produce 1 mol of Ag(CN)2-
Ag+ is the limiting reactant, it will completely be consumed (0.000297 moles). CN- is in excess. There will react 2*0.000297 moles = 0.000594 moles. There will remain 0.0242 - 0.000594 = 0.023606 moles CN-
There will be formed 0.000297 moles Ag(CN)2-
Step 8: Define Kf
Kf = 1.0 * 10^21
Kf = [Ag(CN)2-] / [Ag+][CN-]²
Step 9: Calculate concentration of Ag+ that remains
Final volume of solution = 110 mL + 220 mL = 330 mL = 0.330 L
[Ag(CN)2-] = 0.000297 moles/0.330 L
[Ag(CN)2-] = 0.0009 M
[CN-] = 0.023606 moles / 0.330 L
[CN-] = 0.0715 M
[Ag+] = TO BE DETERMINED
1.0 * 10^21 = 0.0009 M / ([Ag+](0.0715²)
[Ag+] = 0.0009 / (1.0 * 10^21 * 0.0715²)
[Ag+]= 1.76 *10^-22 M
The concentration of Ag+ that remains is 1.76 *10^-22 M