51,125 views
1 vote
A garden hose with an internal diameter of 2.9 cm is connected to a (stationary) lawn sprinkler that consists merely of a container with 24 holes, each 0.36 cm in diameter. If the water in the hose has a speed of 0.98 m/s, at what speed does it leave the sprinkler holes?

1 Answer

5 votes

Answer:

Water leaves the holes with a speed of 2.65 m/sec

Step-by-step explanation:

It is given internal diameter of garden hose = 2.9 cm

So internal radius
r_1=(2.9)/(2)=1.45cm

Number of holes n = 24

Diameter of holes d = 0.36 cm

So radius of holes
r_2=(0.36)/(2)=0.18cm

Velocity of water in hose
v_1=0.98m/sec

According to continuity equation


A_1v_1=nA_2v_2


\pi r_1^2* 0.98=24* \pi r_2^2* * v_2


1.45^2* 0.98=24* 0.18^2* * v_2


v_2=2.65m/sec

Therefore water leaves the holes with a speed of 2.65 m/sec

User Jabberwocky
by
3.4k points