Answer:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet
Explanation:
Let the dimensions of the box be x, y and z
The rectangular box has a square base.
Therefore, Volume of the box
![V=x^2z](https://img.qammunity.org/2021/formulas/mathematics/college/64nlnl0qlkaidhh3q8fllrzjj8y6k88zhx.png)
Volume of the box
![=12 ft^3\\](https://img.qammunity.org/2021/formulas/mathematics/college/6jfw5aznp811822vq2blkc90tk1lgkxznm.png)
![Therefore, x^2z=12\\z=(12)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/gn0h2uceybe1olzbb1zhqdjen9jj3512pq.png)
The material for the base costs
, the material for the sides costs
, and the material for the top costs
.
Area of the base
![=x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/psmbukedjzv7zayadiw4insfksewmahqyi.png)
Cost of the Base
![=\$0.17x^2](https://img.qammunity.org/2021/formulas/mathematics/college/2et68tsfns21k9srbslzvbmqgchy5x1tyr.png)
Area of the sides
![=4xz](https://img.qammunity.org/2021/formulas/mathematics/college/nz97oc3ot6hah9pbdk91dk2hybui8icwtl.png)
Cost of the sides=
![=\$0.10(4xz)](https://img.qammunity.org/2021/formulas/mathematics/college/z161bg5pcn8ugnxcfechzt2tuzk6zxpcxt.png)
Area of the Top
![=x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/psmbukedjzv7zayadiw4insfksewmahqyi.png)
Cost of the Base
![=\$0.13x^2](https://img.qammunity.org/2021/formulas/mathematics/college/r348i16w08s7jtp4kdrq2ckndzx748v9lv.png)
Total Cost,
![C(x,z) =0.17x^2+0.13x^2+0.10(4xz)](https://img.qammunity.org/2021/formulas/mathematics/college/7aeuk1mp7d4xaexxt4oa4q17tqchz8kfu7.png)
Substituting
![z=(12)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/hsfqxji6uxfy4cegj7k8nkiap8vmezulee.png)
![C(x) =0.17x^2+0.13x^2+0.10(4x)((12)/(x^2))\\C(x)=0.3x^2+(4.8)/(x) \\C(x)=(0.3x^3+4.8)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/be3aqjopgudkuz64hpf95ztkfnilkl4u2g.png)
To minimize C(x), we solve for the derivative and obtain its critical point
![C'(x)=(0.6x^3-4.8)/(x^2)\\Setting \:C'(x)=0\\0.6x^3-4.8=0\\0.6x^3=4.8\\x^3=4.8/ 0.6\\x^3=8\\x=\sqrt[3]{8}=2](https://img.qammunity.org/2021/formulas/mathematics/college/xypbbaenncy2esgxkktq2ydur9sfvynbly.png)
Recall:
![z=(12)/(x^2)=(12)/(2^2)=3\\](https://img.qammunity.org/2021/formulas/mathematics/college/9zbv2jec1aipckdgl8kvzcnsrmb8af238v.png)
Therefore, the dimensions that minimizes the cost of the box are:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet