Answer:
The final temperature at the equilibrium is 337.1 K
Step-by-step explanation:
Step 1: Data given
Number of moles He = 0.400 moles
Temperature = 24.4 °C = 297.4 K
Number of moles N2 = 0.600 moles
Temperature = 80.1 °C = 353.1 K
Pressure is 2.00 atm
For He(g), Cv = 12.5 J/K*mol
for N2(g), Cv = 20.7 J/K*mol
Step 2: Calculate the final temperature
Q(He) = -Q(N2)
Q = n * Cv * ΔT
n(He)*Cv(He) * ΔT(He) = - n(N2)*Cv(N2) * ΔT(N2)
⇒with n(He) = the number of moles of Helium = 0.400 moles
⇒with Cv(He) = 12.5 J/K*mol
⇒with ΔT(He) = the change in temperature = T2 - T1 = T2 - 297.4 K
⇒with n(N2) = the number of moles N2 = 0.600 moles
⇒with Cv(N2) =20.7 J/K*mol
⇒with ΔT(N2) = the change in temperature = T2 - T1 = T2 - 353.1 K
0.400 * 12.5 * (T2 - 297.4) = - 0.600 * 20.7 * (T2 - 353.1)
5 * (T2 - 297.4) = -12.42 * (T2 - 353.1)
5T2 - 1487 = -12.42T2 + 4385.5
17.42T2 = 5872.5
T2 = 337.1 K
The final temperature at the equilibrium is 337.1 K